: } T N i

— "

M AREPFO WOWLWL

3

AAUAAADADAAAANAAND AN

Marinchip 9900 Pascal User Guide

Table of contents

Introduction
1. 1. Acknowledgements

Pascal references

C
n
-
3

g Pascal

Writing the program
Compiling the program
Executing the program

. . Program parameters

File compatibility

Compiler temporary file usage

o GhLWN-
-

_hanges to the Sequential Pascal language
Scanner changes

1. nger and lower case

. 2. Standard operator characters

. 3. Comment delimiters

. 4. 0Odd length strings

OT messages
Run-time errors
Overflow
Pointer error
Case or subscript out of range
Tag field incorrect for variant reference
Heap overflow
Stack overflow
System error messages
.Bad program name
Hubh?
Bad parameter
I1/0 error
1/0 error on file <filename>
Kernel called by sequential program
Compiler error messages
Try again
Temporary file missing
Ob ject f1le lost
Saource file unknown
Destination file unknown
Compilation errors

SISISISISISISICININ SN el et et et et el kU S ol S SN 0
curLN CORONS CUBLOS




Marinchip 9900 Pascal User Guide

i. Introduction

equential Pascal for the Marinchip 9900 computer system. equential

Jascal is a minicomputer—-based version of the programming language Pascal,

which is widely regarded as the leadinﬁ language in wuse today for the

development o reliable software throug he techniques of structured
rogramming. Pascal contains the features found 1in other programming
anguages such as DBASIC, Fortran, and Algol, but adds the following
mportant capabilities:

yjarinchip 9900 Pascal 1is an adaptation of the programming language

Pascal allows the user to define new data types, and to thereby
extend the language. The error—-prone coding of program items as
explicit numbers 1s eliminated.

. - Pascal allows structures of data to be built. This allows the
’ definition and convenient use of tables containing various kinds
of data that are essential in software development. '

Pascal has extensive compile-time checking of program
correctness. The compiler detects all inconsistencies in use of
variable tgges. which catches most of the frequently—-made errors
in Fortran, BASIC, or Assembly language programming

Pascal provides pointer variables and dynamic storage allocation.

r These features permit virtually all sgstems programming. (e. g..
1 compiler and operating system) tasks to be written entirely in
! Pascal. . :

. Pascal provides powerful program control statements which
l eliminate the need for the "go to" statement. Programs written
| gighout "go to" statements are much easier to understand and
- ebug.

at scal programs may be called like any other program within the
m The ascal compiler is a Pascal program that runs under the

_Ear%gchig Systems has integrated Pascal into the Marinchip Disc Executive,
o a
yste
caontrol of the Disc Executive,

.
;}‘1. Acknowledgements

:

'

{
-
i
|

v

The Marinchip Pascal system is based upon the Sequential Pascal compiler
esigned b Per Brinch Hansen and implemented by Alfred C. Hartmann on a
DP 11/45 at the California Institute of Technology. The design of the
ascal runtime system which interfaces Pascal programs to the Marinchip
Disc Executive draws upon. the design of the Solo ogerating sgstem.
esigned and implemented bz Per Brinch Hansen, and the Concurrent Pascal
interpreter and kernel, written by Robert Deverill and Tom Zepko.

. Pascal references

D

EAE

“This manuval will not attempt to teach the language Pascal. The user is
referred to the Followina references for a description of the language.

i The references will be cited by the numbers given throughout the text of

tkhis manual.

L

11 Brinch Hansen, Per, The Architecture of Concurrent Programs. Prentice
Hall, Englewood Cliffs, New Jersey, 1977. This book describes the Solo
operating system and the Concurrent Pascal lanﬁuage. The Solo
operating system environment is simulated by Marinchip Pascal, so this
book 1is the definitive reference on wuser—-level programming in

+Sequential Pascal. The information on the language Concurrent Pascal
l itself is applicable to Marinchip Concurrent Pascal, another compiler

.
]
|

available for the M9200. This 1is also one of the best bosoks about
developing operating sgstem software and the design of large systems in
general that has ever

|
L
een written.

thrument ia the fFormal definition nf 'S

€21 Brinch Hansen, Per, and Hartmann, Alfred C., Sequential Pascal Report. &
California Institute of Technologg, Information Science, 1975, This(s

Senueatial Pascal and describes ™

1
5




W{ Marinchip 9900 Pascél User Guide

- the language as it exists on the M?900. It is written to be used as a

Treference to the 1language, not a tutorial in Pascal. It is

" indispensable for any serious user of Pascal.
Q;F\EBJ Jensen, K., and Wirth, N., Pascal - User Manual and Report (Second
edition). Springer~Verlag, New VYork, 1974, This is THE tutorial
B manual for Pascal. It describes a Pascal compiler for the Control Data
| 6500 which differs in some respects from the e&uential Pascal compiler
‘ “for the M9900, but still is an excellent introduction to Pascal #for

vusers familiar with_ other programming languages as well as those
learning programming in Pascal.

, (Finally, if 1like most wusers of Pascal, you become a Pascal fanatic,

exhorting all listeners on the wonders of writing programs that work the
“first time and continue working forever, you should yoin the Pascal User’s

Groug, which publishes a quarterlg newsletter containing all the news
"labout FPascal from around the world. This is the major forum for reporting
I {implementations, experience using implementations, and commentary
fregardxn% the 1language, its wuse, and proposed modifications. To goin,
send $4 for one year of membership to:

Pascal User’s Group, c/o0 Andy Mickel
! University Computer Center: 227 EX
- 208 SE Union Street
University of Minnesota
r} Minneapolis, MN 3554355

3. Using Pascal
| [This chapter describes how to write, compile, and run Pascal grograms on
~“the ™MI9200 system. The vyser 1is assumed to be familiar with use of the
Marinchip Disc Executive and the Text Editor. The reader who is
u
G

nfamiliar with those s%stem components is referred to the respective User

1 vides for more informa

ion regarding them.

{

3.°1. writing'the program

»lA Pascal program is written according to the language specifications in
the references given in chagter 2, and entered into the system with the
~—~Text Editor. Since input to the Pascal compiler is totallz ree—form, the
' user need not be concerned with column alignments when entering the data.
’ n% sequential Pascal program begins with a “"prefix" which defines the
infterface between the pro%ram and the operating system. This prefix must

be added to a pro%ram before it is compile This is most easily

"eccomplished b he "RF" command in the text editor. The user should go
f to the top of the file, and enter the command:

~ RF PREFIX

{w o the text editor, where PREFIX is the name of the file on the system
| gisc -containing the standard prefix. (The standard prefix is supplied by
“Marinchip Systems in a file by that name). This command will copy the

prefix before the first line of the user program.

ylhe user is Tequired to explicitly add the prefix to programs because with
(_the Concurrent Pascal compiler, the user can define new operati?? sgstems
ow

having different interfaces to programs. In order to a Pascal
) ro%rams to be run under these new systems, the abilitg to change the
| brefix must be available. A complete definition of the standard prefix
| Bxplaining it line by line may be found in section 5.2 of reference [11.

|

- :2.2. Compiling the program

nce the Pascal program has been stored in a file with the Text Editor, it
may be compiled with the Pascal Compiler. The compiler is called from the
V]Ommand level of the operating system by the statement:

e PaASCAL(Cinputs, Clistinal, <ab ject)




Marinchip 9900 Pascal User Guide

is the file where the compilation listing should be aced, and <ob jec

Jhere <input> is the file containing the Pascal source grogram. Clisting?
2
r}s the file in which the executable object code will e writtem by the

. lompiler. The <listing> file may be either a disc file or a device file

' lJuch as the console or a printer. I# the listing file specification is
‘omitted <(only two commas appear between the <input> and <object> file
names), no program listing will be generated. Error messages, if any.,

~vill still be rinted on the system console. For example, to compile a
\Kro ram named CALC, glacing the executable code in a file named XCALC, and
l lending the compile
, PASCAL (CALC, CONS. DEV, XCALC)
“!# no listing were desired, the command would be:

PASCAL. (CALC, , XCALC)

)%F the compilation 1is successful, the compiler will simply exit back to
{_ the operating system and the operating system command prompt will
Teappear. If the compiler found errors in the program, the message:

isting to the conscle, the command would be:

Compilation errors

ill apgear on the console. If the compilation listing has been sent to a

isc file, it must be examined to determine the cause of the errorvrs.

|
) 3. Executing the program
I
 like an$ other program under the Disc Executive, simply by typing the name
_5f the file containing the program. Note that it is not necessarg to link
ascal programs before execution: they are directly executable after
qmp%lagion. To execute the program XCALC compiled above. one would
imply Type:

-
~I xcaLc

ﬁfn the console when the operating system command prompt appears.
|

;

d

‘Ince a Pascal program has been successfully compiled, it can be executed
P

3.3 1. Program parameters

/ Programs called from the console may be passed parameters. These
~parameters are enclosed in garentheses following the name of the file
containing the program. The file names passed to the Pascal compiler are
n example of grogram parameters. Program parameters ma be either
fEnte ers f(simple numbers), Boolean values (represented by the words TRUE
_br FALSE), or identifiers (any non—-numeric character string other than
TRUE or FALSE). 1If two consecutive commas appear., the parameter in that
Eosition will be considered to be omitted, and its type will be set to

=

|

ILTYPE. Parameters are separated by commas, Just like rocedure
arameters in Pascal. The structure of program parameters and their wuse
ithin a Pascal program is explained in the section "Program Parameters"
in chapter 5.2 of reference [1]. To ease compatibility between Pascal
-programs and programs written in other lanauages, the parentheses
Euggounding the parameter list are optional. ence, the two program
alls:

i

PROG1 (OUT, IN, 10)
and: PROG 0OUT, IN, 10

re equivalent.

il
4 .
.Pascal programs are allowed to call other Pascal programs in the M9900
' implementation, and programs- can pass parameters to the programs t
"lin the same manner as parameters are entered on the console. This allows
~Pascal programs to be called either from another program or directly from
the console without any modification of the program. It also allouws
" Pascal to be wused directly as the system command language, avoiding th¥®
eed for a special job control language.




Marincﬁip 9900 Pascal User Guide
3. 4. File compatibility

C}; Marinchip Pascal reads and writes ASCII files that are compatible with
<. Jthose wused by all other Marinchip software. The standard WRITEARG,
READARG, READ, and WRITE procedures of Sequential Pascal are used to read
~and write files. Both disc and device files may be used without problems.
")The capability to use another Pascal program as input or output from a
program is not currently provided in Marinchip Pascal: input and output
"Imust be files. The READPAGE and WRITEPAGE I/0 procedures are also
supported as alternatives to READ and WRITE.

;AThe OPEN, CLOSE, PUT, and GET I/0 mechanism of Sequential Pascal may be
Jused to read and write any disc file. The random-access nature of these
" requests will be ignored if they are used on device files.

TThe ACCEPT_ and DISPLAY procedures are implemented according to the
3§8equentia1 Pascal documentation for communication with the system console.
" The LOOKUP Brocedure accesses the system file directory. The identifier

-passed to LOOKUP may be a fully general file name as described in the Disc
13 xecutive User Guide.

3. 5. Compiler temporary file usage
L]The Pascal compiler uses the two system standard temporar% files, TEMP14$
and TEMP2%, during the compilation. If for some reason other files are to
be used (for example, when compiling a wvery large program where the

standard temporar% files are not large enough), this may be accomplished
emporary files in the call on the compiler:

! i

L

| by specifying the
PASCAL((input}.<listing>:(obJect>:(tempib.(teme})

" l1f called in this manner, the compiler will use the named files for its

i

[ ——

temporary files.

]4. Changes to the Sequential Pascal language

his «chapter describes the modifications made to the Sequential Pascal
language by Marinchip Systems. Programs written with the intention of
eing T™un on other machines offering Sequential Pascal should avaid the
se of the features added in the Marinchip implementation.

—

|

-

i. Scanner changes

|

—

‘The scanner phase of the compiler has been modified to permit optional use
of a syntax more like that of standard Pascal. The Sequential Pascal
Byntax is still accepted without modification. .

|
)

4. 1.1. Upper and lower case
L

ﬁdentiFiers and reserved words are now accepted in both upper and lower
case. The case wused in a letter has no effect on matching, hence the
following identifiers are considered identical by the compiler:

ARGLEBARGLE arglebarge ArgleBargle ArGlEbATGIE

]

1.2, Standard operator characters

vential Pascal was originally developed on a card system, so several of

standard Pascal operators that do not aggear in the Hollerith code
e redefined. Marinchip Pascal accepts both e standard character as
1 as the Sequential Pascal circumlocution.

Sequential Pascal Chanmdged M1 ternnibs




[ {‘ - [ [‘43 (T — “] oty Ty —

Marinchip 9900 Pascal User Guide

4.1.3. Comment delimiters

Sequential Pascal normally uses the double quote character (") to delimit

comments. Marinchip Pascal also allows the standard Pascal comment
delimiters { and } to be vused. The curla brackets ({)) will be ignored in
a comment bracketed by double uotes (%), and double quotes will be
ignored within a comment defined with curly brackets. This allows a

limited nesting of comments, which may prove useful when it is desired to
turn off code containing comments.

4.1 4. Odd length strings

Sequential Pascal normally requires that all constant strings (other than

single characters) contain an even number of characters. Since this

forces the wuser to 1laboriously count characters unnecessarily, this

restriction has been removed in the Marinchig compiler. Strinzs which
contain an odd number of characters will be padded with an ASCII NUL
’¢:0:)’ character to extend them to anm even number o# characters. This

has no impact on existing programs, because such strings would have caused
compile errors in previous compilers.

5. Error messages

This chapter describes error messages that may appear in the process of
vsing the Pascal system.

S5.1. Run—-time errors

The following messages indicate an error detected during execution of a
Pascal program. All of these messages will be followed by a 1line which
identifies the source 1line number within the Pascal program where the
eTrTor occurred.

S.1. 1. Overflow

An arithmetic overflow was detected. Integers are limited to the Trange
-32768 to +32767, and reals are limited to approximately +-10E7S.

5.1. 2. Pointer error

‘Ah attempt was made to use a pointer which did not point to anything.

5.1.3. Case or subscript out of range

Either a subscript was outside the bounds of the array it was used to
subscript, or the value of the expression in a CASE statement failed to
match any of the case labels in the statement.

5.1. 4. Tag field incorrect for variant reference

An attempt was made to use a field in a variant record when the tag field
indicated the record contained a different structure than the one used.

G

—



T

Marinchip 9900 Pascal User Guide

‘25.1‘5. Heap overflow

The program has run out of storage when allocating new data items with the
NEW construct. Check for runaway allocation or bad storage management.

S5. 1. 6. Stack overflow

.1The program has run out of execution stack. Check for Tunaway procedure
Tecursion.

}5.2. System error messages

")The following messages are generated by the Pascal system. They may occur
Zeither in the process of compilation or execution.

The program name given to the system is badly formed.
.2.2. Huh?

5.2.1. Bad program name
S
The program name given to the system cannot be found on the disc.

|
|
|

5.2.3. DBad parameter

\\The program parameters were bad. The parameters must be separated b
commas, and consist only of simple integers, the DBoolean constants TRU
and FALSE, or identifiers of 12 characters or less

}]5.244. 1/0 error

! lor servicing an I1/0 request made by a program.

~]An unrecoverable I/0 error has occurred either loading a Pascal program,
|

5. 2. 5. I/0 error on file <filename>

,JAn I/0 error has occurred when using the GET or PUT I/0 mechanism on the
named file. This messagg may appear durinﬂ a compilation. I# the named
{filename> is the object file specified on the call to the compiler, the

' lobject file is probably too small to hold the generated obgject code. I¢
the <filename> is TEMP1$ or TEMP2%, larger temporary files are reguired to

“compile the program. See the section "Compiler temporary file usagg"

e

above for information on how to specify alternate temporary files for
| icompilation.

|

'5.2.6. Kernel called by sequential program

his message indicates an internal error in the Pascal system. It ma

‘ be
\»haused_iF an object file created by the compiler 1is overwritten begore
execution.

3 Compiler error messages

hen errors occur. These are . the messages which_ indicate source
rogram errors which are placed in the listing file. Those messages are

5
’ ﬁhe -following messages are tg%ed by the compiler on the system console
no
~p




! .

Marinchip 9900 Pascal User Guide

)generallg self—explanatory.

‘

}5.3.1. Try again

This message is given when the compiler is called with bad parameters. A
“jsample call on the compiler will be typed following this message
indicating the proper form of a call on the compiler.

535.3.2. Temporary file missing
)
EJThe compiler requires two temporarg files., TEMP1$% and TEMP2$, to be
resent on the system disc. If either or both of these files are missing,
} his message will appear.

|
'5.3.3. Objyect file lost :

f‘The compiler was unable to save the object code in the named object file.

(@5.3.4. Source file unknown

—

»

~ The source input file specified does not exist.

-! 5.3.5. Destination file unknown

—The listing File named does$ not exist.

tJS.B.b. Compilation errors ‘ €i‘

' |The program compiled contained errors. The wuser should examine the
l'listing file for compiler error messages




-

activated by
~%necantng,|f

‘}thch may hei

Param(.1.) ): =g Tﬁi= flle['
‘ﬂany nnt mentloned ave se
‘ﬁThe Frefix.

' fasiHties ‘to-ease »
fcon=|=t= of dummy ’routlne= which define the cyntaxrof calls upen them,

‘rnutlne: must ke L=Iied he*ore G-hﬁ“‘ become effective.

,Fn]e mantpu]atlun“

(fi
Tj
ﬂ
ﬂ
|_s

'[ 4

DF«Uﬁer tary cupacorit  fov 1 = al
expensive. Brinch Hanseﬁ's baov Ly
P ‘

helpful. These no
read alongside the User dﬁﬂwe'
disc. The program ch/ included

points raised than ic ﬁthE-aﬁy'EBDU?gﬁﬁ uaefﬂ?ness,

a
Prefix, foil
Canstants, Da
These are fol
which wiil be
‘The proor

aftE?;t5m~‘
; - on ihe
n-nu thﬂ prnqrdm which
nnther 1Gr the prﬁgran‘;

is

namec mu
- The d,‘
Devn

:E,pe%,ﬁdey, e, Cons dev Proint

‘ﬁr“ﬁrtly Cdlieﬂ the ﬁrouﬁen
qyg ;n:erts'dn extra param of
G»mange. Thic extra one’
R ~nﬁ Ha Dn.. “Ten’ arguments
See ‘he reror type ﬁrgtype

used

Used by . the ‘autherc »af ¢ the Iénonaaa_ to h|ve of f ail hﬁrdware re]ated”
trancportah;l;t ‘hetween® “different :

and
direct . execution to  the actual routines  within the opera,lno sy:tem.fSome

There are tiwo distinci groupe for thie, they serve to tell the ‘cystem the

names and intended use of the 7 = S SR o o

1. READ/WRITE. ‘ o i
A call on the Frefix procedure Writearg activates thie groupi-
Writeargi{inp,source) cor Writeargiout, dest) opens )
the files named in the variablec Source and Dest
which must be defined as Argtype.

Thie agtivéfe= the prorecurec Fead, Write, Keadpage

and Wr|tepece which may then be used to access

their files csequeniially from top to eof. ‘

The closure call is Readarglinp, source) or Readarg(out, dest).
They return a booiean to inform on satléiartory

file usage.

2. Open(fileno,filename,found) ac
with the file by which it is ¢
This can only take the values
two files can be open at a time.
This enables Get, Put and Lengin. Get & Put can -
set the fiie pointer to any page so 'give random access.

Close terminates access and a2llaws re-allocation of ithe file number.

ciates an integer
exfter referenced.
or 2, so only

5]
her
1




m o
M
71
]
"
[}
n

sre apoiic Foy

&  &pD =E
y be addres fi:
nsfe sing a

D ||
]
2
<%
S

—
. m
n
o

M

D]

should | be-
functions ar
ORD
CHR (.
%))
Twuﬁ
The Lao p prnceﬂu and ¥ {fgund

{ Di:‘c‘ﬂ

name. This is
ald;

dentify  (€1]§ .the =y
fore anything else. It
zource of resulte when
orce oniy for each
duriﬁg\&ﬁétpi?dﬂ.\

Fun calls a program from o
te tyned for a conscls call
They are: ‘U:Ed‘dftﬁr ret

ed ogm
wgi:;emlnatedﬂ :
Xpeek/Xpoke similar ic Bz
#call calie an fissembler I have

not vsed this yet but it

A1) routines starting R . o
A orobiem hers uee Prefix deccrigiione of peripherale cuch ac
pedevice, Printdevice, hazve never had thes a:cepted ty the gy
which only recognises Mizx Conc.dev, Print.dev.ei ‘Such routines thus 4o nos
work, Exceptions are in f loresult and Icparam Bnth ‘of these are

sffective. v : I S S S

. Three tacie ar
e to get ocut of
ctive in Jobtasic

: Inputta?k, Jobitask & Outputtask. I have never
Brinch Hansen says that Read]ine/WFiteiine a
y don’t work. ’

m—'l'.L

Frogram p(var; paramiarglici) : .
Thie 1is called when the pgm is activated from the conscle. Ho ziher

definition Program must appear,

Gther Features, Pre-defined cperators for:i-

Sete OR Union = Equal
& Intercecticn <> Not equal —
- Difference <= Contained in
iN Memberchip >= Contains
= fissignment

17-4




—"

-

-

<‘r /—v

-

3

I s R e R

N

—

]

=

— [ =

‘}SGEEfC
'vﬁrdthmwfir FU!

- Tnfegmﬂ e

lS one).‘

Var:able & dnlvevsal Farameters.,‘ 

i€ egxnecied meaning. = fiz zre2 zalwzys Eooiszn,
Boolean & Or ﬁQT where resyltis ars either Fafée oy True.
Integer + - % DIV MOD
-fééi =« < 'iéi i ihe ﬁre—def?ned fonctian BESazﬂf,‘*
rrays i= -

o

Siyings

En ng of m charsim!.
uanfrn1 cg 4 in ascii coded  form. es.g. °f
the form f j¥ .ins Feg e éﬂstfiﬁg vars.:

U@EPd'luﬁ_qﬂ' Lo

- 8UCC he su cessor of prec cessar value of

silent on ihis praL;Agbmé'whjch ere implemenied are:-
SINGO) . RS T X
of  the same type‘aggx', tut that muet be Real or

».Erxnch.H'
;ABS{V),
ihese

COQ(y) ARCT
‘ These mu\t

~11 befﬁe 1

"When a procedure is given parameters, ii may normally vse the value <cupplied
but is not alicowed to'rhange“lt These are Constant Params. If the procedure is
reqU|reH io change the value, the parem identifier must bte preceeded by the.
symbol VAR. e=.g. Procedure Somethlng l:dnr.lnteger, var block:!page) SR
 Of the twc perams the routlne may change the valuve cof ‘block’, bot not ‘addr’
Similariy, it cannot always be known in advance what type of datz a variable
will be calied vpon to accept. Thie m:zy be accomodated by writing UNIV in  front
of the @Hentxvnc»; '

€.9g. rroce~ur~ uomethlng (univ tex itiline). : )

This makes text’ a universal param which can accept any dats type occupying
the sameflengthras would type .char.

Gonclusion. Much more information can be got from reading print-outs of master

_disc programe of .pas.

i

Note that in an IF-THEN-ELSE =tatemen no semi-colon muet be vesed in front of

Else.
Is< there ényone with original Mdex FPacscal documentaticn prepared to make it

available for copying?
Finally, Brinch Hancen mentione severzl concole commands. I can’t find any

which'work. Can you?
The Program Copy.

Call from console,
type 2/copy infile,outfile

Copy +transfers data from in to cut. The files can be disc files with Drive
number, or device files, Cons.dev, Frint.dev, etc. If you <can’t remember the
correct call, just type Copy . A prompt message is printed

17-5
175




]
| #0s0
R 5 e
R B3-S {  End Prefix 3
RS LA LR s
s 114, { L‘d‘dt‘ﬁﬂ“ for Copy.}
P15, : : ‘
fﬁ;'iié. Const eo 0 nu] = {00
L] 117, { These are Et,inq Constants but control chars
S 118, { must be writien as decimal coded Ascii.]
ey 119, Var geri s
] 1zo. . ;foundi—boaiean:
Logzt, Rl
24122,
C]otzal o :
1240 ( Prﬁcndure der?ardtienc i , Sl
125. ‘( Note! II anprcredura calls cher pru;edures, ite" 3.
24, Re dncldrat: ust follow any for those it calie. 3.
gLt e L B et o 7
128, iéxiﬁ!ine):
.‘ vy exist whilst the procedure is
Sl 13, are not acrESSIbie from nut Sid
o132 : ,
,‘LJ~1134.
Soooaas,
136, ,
[]@;137;‘ e 5
T138, [ of prnce ure Contewt }
1239, BT
"] 140. Procedure Help, N
{] 141, Begin SR , , T
1232, Lnn‘n t (7 Bad cal] Correct form is ’’Copy (Infile;@ut{iieiidentifﬁér)”(;l@:)’):
r— 143, Endl ‘ ) L
‘},144. |
145, Freocedure Error (texiiline): , .
144, {(the strihg Facced to thic srocedure ic pasced or again to Contexil

J} 147, Begin
14¢, Context (text),
149, ok := false!’

‘LJ 150. End:
158, : '
L 182, Procedure Set_fileg? ( Toop to locate & open both filec 1
153, Var filename:argtype: itinteger: :
{l 154, {Note thls var i is not the same as that used in Context.}
o 135. Begin § '
156. ok = trve:
} 157. foer i 1= 2 to 3 do
Ll 138, Eegin
159, with paramlil do
| 160, if (tag <> idtype) then Help else -~
‘ \ 161, begin —
S| 162, Lookup (id, attr, found"
163. if found then
| tes. Begin
LJ 165, Case attr.kind of
166. scratch,concode,seqcode:
! 167, ‘ Error (‘File kind must be ascii(:10:)):
tJ 168, Ascii:
169. End:. ~(.of:Case }
170. (&2

[ —
I




i

171 If | = Z ihen Uritearg{ing,
a 172, Ui“liE’n}‘quu‘,
[ I 2 R
‘ A .
‘,J 174 En fof If

i = 2 then
sls
fof If L
{of iocop
{of proc

d(re Terminatg!

wrjte {eot)! wri
'Rﬁadnrg {inp

y

errd?(’“? rlle“
With param[i] do - :
Begin tag := hooltype;'

)
"

Ll

LV B N
"

-
l:
in
m
-
:T‘
m
m
=
‘-‘-
~5
N
L
[\ Th
e
U
=
e‘-
o:

3 ?nd*“-{ ‘of Term1nate

B I RN « N«
-9
)

[ S ) BN
.

Frocedure Copytext: : e ' i
{ Cepies ctandard pages’ of ascii text.)
( Declare local variables fur uce }
{ within this routine on]y

Var hlocki:nage: eof: bogleanft’

o

_\:(
5.

R R L T L LT S N T G Py P P VPG IV Py
.

[ EFal

.

. Beqgin
I3Z.  FEepeati
— 2hE, Readpage (biock, ecf):
;J ZGd, Writepage (block, eof):
263, Until eof: : B
2346, End: ( of Copytext }
267, . _
208, ( end of &i! preliminary definitione & declaratione 2
209, ’ !
] z10, ( The main program 3}
‘_J 211, Begin
Z132, Identify (° iCopy:(:10:)‘): (pass pgm name to system.}
213, Set_files: { call this procedure }
\\ 21z, copytext: { call another 1}
L) zts. Terminate: { and the last.}
Zi4. End. { note the mandatory point here 2
? 217. ' -
‘J 218, { End of Copy ? —_
¥FPof¥ '




~support for HMd T is very. ar horrendously

, Hansen’s book Ir cet me 41m0 it ise not very

'ﬁtes are 1ntenﬁej in getting - They should he

the USEV‘ rl“?int out of. t from the master ‘
but was ~ to illusthate s

’J:efuines

?Dllnw d: hy
vbg gxecute

e : dlrect Exe-utionitb the” drtual
[} ) routlnesﬂmust be galled before”ather

outinegs n' o thi
< become effective

A F:le manipulatlon.i;‘ L o R T IR
[ - There .are .two d|:tlnct grcupn for this, they serve . to tell the system the
L] names and nfenaed use of the fl]EEfv A
1. READ/WRITE.
11 - . A call on the Prefix ﬂrOLedure Writearg- actlvate= thl= graup
- ":'erteargfunp source) or Writearqsout dest) opens.
) ‘ . the files named in the variables Source and Dest
(} ) which must be defined as Argtype. :
3 This activé@es the procedures Read, Write, Readpage
_ and Writepage which may then‘be used. to access
{W ' their files sequeniially from top to eof. ,
3 . The closure call is Readarglinp, source) or Readarg(out, dest).
They return a booiean to inform on satisfactory ‘ '
- file usage. - - :
‘J - 2. Open(fileno,filename,found) associates an integer
with the file by which it is thereafter referenced.
This can only take the values ! or 2 so only
”, two files can be open at a time. o
I This enakles Gel, Ful and Lengin. Get & Put can v —
set the file pointer to any page so'give random access.
Close terminates access and allows re-allocation of the file number.

-




Conseole 170, , .
: - If the conscle | =cribed to the system as Cone.
:“D“{lﬂes are _applicahle. The random nature of CEL/Fut,’ 1gnup
: : : ca to two special rouiines Dlsri"“f 1
and. ueeﬁ no pr: or. autlva*nnﬁ (5eE

nnt uéed thls yet but 1t éemc nmple‘;

{} . ‘f ﬁ]l routines. startlng 10,00 ! 2 e G
— ‘ A problem here as most use Prefix descriptions of peripherals such ac
Typedevice, Printdevice, eic. ‘I have never had these accepted by the compiler

J which only recognises Mdex Cons.dev, Print.dev.etc. B8uch routines thus do not
- work. Exceptlonsv are the types loresult and Ioparam. Both of these are
vEffE’thE. A : ‘ ‘ : : R Vi :

H

;} ; Taskkind. Three tasks are defined, Inputtask, Jobtask & OUtpuftack. 1 have never
~ been able to get owt of Jobiask. Brinch Hansen says that Headllne/ertellne are’
“not effectlve in antask They don’t work. :

=

Frogram p(var; param: arglxs*) ‘ - : RS
Thic - is called when the pgm is activated from the conscle. No oiher

definition Program must appear.

~——

Other Featuresi,.Fre-defined operatore for:-

LJ Seis OR Union = Equal
& Intersectiaon <> Not equal o
) - Difference <= Contained in
il IN Membership >= Contains
= i= ° Assignment a




L

—

T

implemented:
'ﬁst*be‘Re

Aé’é _&a

th f value =upplled5
i H If the procedure is;
requwred fo change the vdlue,'th'4pnram |dentlfler ! prnueeded by *the ¥
symbnl VAR. e.g. Frocedure Snmethn g (addr.lnteger, ar blnck page) A e

of.. the two params the routlne may change the value .of blach ‘but not ‘addr’.
c!mllarsy it cannot always be known in advance what type cf data a variable
will be called upon to accept. Thi: mey be ac-omodated by wrltlnq UNIV in  front
of the 1den1if' S :

‘e,g. Frnceuu.e uomethlng (UﬁIV teyt Tine).: .

This ‘makes “fext’ a universal param which can accept3any ddta type eccupylng
the same length as would type char.

Conclusion. Much more |nformat!on can be got from read;nq print-oute of master
disc programs of _____ .pas.
Note that in an IF-THEN-ELSE statement, no semi—cdlun must be used in front of
Else. ' : .

Is there ényone with original Mdex Pascal documentation prepared to make it
available for copying? B ’

Finally, Brinch Hancen mentions several console commands. I can‘t find any
which work. Can you? ' -

The Prcgram Copy.

Call from console,
‘type 2/copy infile,outfile

Copy transfers data from -in to out. The files can be disc files wifh Drive
number, or device files, Cons.dev, Frint.dev, etc. If you can’t remember the
corgect call, just type Copy . A prompi message is printed. ‘




142. : ® :' ' 3. Gor - f oy - S{Int e;Outfile: i‘denti’_fv‘iérﬁ)’
143, End! i Fol AR : BRI
144,

145, Procedure Error (text Tine) : R ‘
144, - (the :trlng passed tn thtc procedure is passed on again to Context
147. Begin P :

148.  Context (text)'
149. ok := false,
150. End:

15%.

152. Procedure Set fl]es, ( loop to locate & open both fnlec 3
153. Var filename: argtype, itinteger:

154, (Note this var i is not the same ‘as that used in Context.?
155. Begin i - L : o b
156. ok != true: ' ‘ '
137.  for i i=
158. Begin

e: ‘
2 to 3 do

159. with paramlil dn
160. if (tag <> |dtype) then He]p else -
161. begin —
162, Lookup (ld attr, foqnd): , A: ‘ - )
163. if found then L o
164, Begin
165. Case attr. klnd of
166.  scratch,concode, seqcode. IO S
167. - Error (' Flle klnd must be ascii(:10:)/):.
168, = ‘ ;

170, (&)




‘Var block: page,' eof bqolean,_»f

Begln ' i ORI . . SR

" Repeat " AR SR Loy

~Readpage (blnck, eof),, : R oA

- Writepage (block, eof):
Untll eof:

End! ( of Copytext 3

{ end of all pﬁgliminary definitibns & declaratféns }

{ The maun program }

Begln , ‘ L ,2 A
Identify (' ﬁGopy:(:lO:)’): {pacss pgm name to system.? ki
Set_files: ( call this procedure )}

copytext: { call another }
Terminate: ( and the last.}
End. { note the mandatory point here }

{ End of Copy } | . S L




Sy
|
———

T

[ “’: T

Das Tary U t v Hdey Fascal is Foh 02 . or rrendousiy

expenelve.

helpful. Ihe:e A dal i be
read alongside an d f he masier
disc. The program Copy included works{'} but was written wmore to illustrate
pointe raised than toc have any enduring useiuiness.
The Pascal Proogram.
This must take
Prefix, foliow
Concstants, Data & Functions).
These are follco fGPmsuQ the main program
which will be e
The program s mogilation, and is
ivated 'hy typin cn ithe consolé. To be
ch is iyped. It is

act ! ;
pedantic,it is ihe name of t il o U-L-f. wh
permitied, but surely
The praogram Copy
Copy {This file,Tha
File names musi comply soa]
Mdex names. The drive 1unber on Qi.c ifiles
identifier. Device
This causes same resiric 3 E ‘
Each parametser in the list, more carmartiv called the ﬁfﬁlﬁént Tiet, may be
referenced by number. The fws nserts an extra param of type boolean
which may be uced o v ffideﬂLE. This extra one is Faram{1l (or
Faram(.1.) ): so This_file i, and so on. Ten arguments are allowed,
any not memtioned are set to Nilt . See ithe record type Argtype in Prefix.

ifier syntax, bui may be standard
is nnt taken as part of the FPascal
Mdex, i.e. Cons dsv, Print.dev, etc.

The Prefix.

Used by the auvthorse of ©the language to hive off'ailﬂhardware related
faeikties +to- ease .transportabiltity hetween different -implementations. It
consists of dummy routines which define +the syntax-of calls upeon them, and

direct execution to the actual routines within the operating system. Some

routines must he calied before oiherc become effective.

File manipulation.
There are two
names and intended use of the

dietinci groups for thie, they serve to tell the system the

files,

1. READ/YRITE.
A call on the Prefix procedure Writearg activates thie grouvp!i-

Writeargiing,
the files named

which must bte

in the variahblec
defined as Argtype.

o
G

source) cr Writeargioul,

dest) opens

ource and Dest

Thie activatec ihe procedurec Fead, Wriie, Readpage

and WFitep.ﬁe which may then be used to access

their files csequeniially from top to eof.

The closure call is Readarglinn, source) or Readarg(out, dest),
They return a boolean to inform on sat iefactory

file usage.

2. Open{(fileno,filename,found) as
with the file by which it is %
Thie can anly take the values
two files can be open at a t
This enebles Get, Put and Lengin. Get & Put can e
set the fiie pointer to any paoe so ‘give random access.

Close terminates access and 2llcws re-allocation of the file number.

ociates an integer
=} ter referented.

17-3



-

———

r—
!

ndom nature
to itwo special
rs and need no

1/0 fAscii restricticon.

-
m
[0}
™
M
o
[>T
)
n
wn

Fascal can only accepi ¢ all other type 11 ne .
Pasedit on the masier disc provides much of what is needed for the onsoie. If
ite =mall demo grogram is teted, it can be copied to z uvsey program in o

i n i 3 1 t

should te pilaced
funcCtions are:—

OFD {21} The valve of the char (x}. {ite ascii code)

CHR () The char whose code is {¥). .

CONY (%) The corresponding to inte

Trunc (%} The ey corresponding to
The Lookup procedure iocaies a nominated file in the directory and if f{ound
returns a boolsan True, Attributes of the file {(see Prefiy type Fileatir
& Filekind), Sl ‘
Identify +teils the <eysiem +ihe program “name. Thie is printed on the console

It is usaful as a de -bugging aid, or to indicais i

tefore anything else.
irce of resultce when o
orce only for each gphase.

during execution.
¥

f
~oorams are called fr-m one running. It
i is optional and is the only use of the

e running. Théﬁname and parames are exactly

Run calls a program from o &
i out two extra variables must be supplied as
c

be iyped for a consaole ca

n
i

They are wused afier retiurn to ihe caller, to show Where and How the cal
_teminated. ‘
Xpeek/ipcke similar ito Basic Feek/FPoke.
~am into action from a running Pascal pom. (I have

Xcall calie an Assembler progr
t used this yet but ii cezme simpie!

es starting I0....
A gproblem here vee Prefix deccripiions of peripherale
Typedevice, Printdevice. I have never had these zccepted by the o
which only recognises dev, Print.dev.etc. Such rcoutines thus dc

ne.
work. Exceptions are the types lIoresult and Icparam. Both of these are

zffective. ‘ [

a are definad, Inputtack, Jobtaszk & Outputtack. I have nesver
teen able to get out of Jokiask. Brinch Hansen says that Readiine/Writeliine are
ot i sit, They don’t work.

Frogram p(var. param.arglist] :
This ie called when the pgm ie activated from the conscle. No other

daefinition Program must appear.

Oiher Features., Pre-defined cperatore for:-

Eetc OR Unian = Equal
& Intercecticon <» Not equal -
- Difference <= Contained in
Membership »= Contains

P
=

ficsignment

174




Boolean £ R NOT where results ars either FE;‘_E or Trus.
Integer + - % DIV MNOD
Real = : = F= o+ =% ihe pre-defined function ABS{u}.
Arvays = =
Strings = =
Records 1= =
Siorage
Ernums .

Caontraol
the form

vnctions. For enumeraiions 7
aU-u (x) and PREC (x) return the successor or predecessor value of x (if there

d are;

b
m

topic. Some which zre imolemen

silent on thi
; SIN(X).
uit of ‘the came type as % , but that must be Real or

m

COS{x), ARCTA&M{x), LN{x) the naturei locg.
These must all be Reals,
There must te cihers, perhaps comebcdy knowes?

Variable & Universal P'rameters.

When a procedure is given parameters;, ii may normally vse the value supplied
but is not aliowed to change it. These are Constant Params. If the procedure is
reguired to change ithe value, the param identifier muet ke preceeded by the
symbol VAR. e.q. Frocedure Something (addr:!integer: var block!page!

0f the twc params the routine may change the value of ‘block’, bot not ‘addr’
Similariy, i cannot  always be known in advance what type of datz a variable
will be called upon to accept. Thie mzy be accomodated by writlng UNIV in  front
of the identifier :

e.g. Frocedurs

This makes ‘it
the csame lengih =z

Ll

"= ).

m

Something (univ textilinel.
xt’ a universal param which can accept any dats type occupying
¢ would type char.

Conclusion. Much more information can be got from reading print-outs of master
disc programs of _____ .pas.

Note that in an IF-THEN-ELSE ctiatemeni. nc semi-colon muet be veed in front of
Else. :
Ie there anyone with original Mdex Faszcal documentaticon prepared to make it
available for :ernng

Finally, Brinch Hancen mentione severzl coneole commands. I can’i find any
which work. Can you? '

The Proaram Copy.

Call from conscle,
type 2/copy infile,outfile

Copy transfers data from in toc cut. The files can ke disc files with Drive
number, or device files, Cons.dev, Frint.dev, etc., If you «can’t remember the
correct call, just type Copy . A prompt message is printed.




[l el e e e
B o ) S <N % I O I v
N w & m m o

"

2 0 m

O S I R e i e T S ST U PR Ny o |

1.

L3 V=S s

n

Jot eh fk [oh ed b bk b ek b

[T L S R % T o I T % I o Y G I W o T O T % Y O I ST % T o I e
R I B

S
-0

Lo}
.

0
| ——

BN S I N I

rn

3
o

[t BN Y]

s

s

[ =

[0 I ) ) [ = N Y ] =}

5= % B % B e B @ B o m B I o 1 BN R R I %

Ln

©n
.

(=

{ End Frefix 3
(&3 :
{ Glokal Declarations for Copy.?
Cons o= 00400 pul = (g

e are String Constants but control

declaraticns }

Nute.

IS
b

-

edure Context (text:line):

v iiinteger! <Cichar!

ke written as decimal coded fscii.}
eger! ’

crncoie, found: boolean:

fileatir:

line:

chare 1}

1f a procedure calls othev procedures,

declaration'must follow any for those it calls.

{lacal variakles only exist whllst the proiedxr

Correct form is ‘‘Copy (Infile,Ovifile!identifier) {1

{ being executed. They are not accessiblie from
Begin
ioi= 0 -
Repeat
o= j+lr o o= textlid:
Di splay (c):

Hatdl c=nl. - - R
End: { of proredure Context 2
Frocedure Help!

EBegin

Context (’/Bad call.

End:

Frocedure Error (textiline):

(the siring paccsed to thics procedure
Begin
Context (text):
ok = false:
End:
F

rocedure Set fileg:
f

et b et ek b bt bA b (A s bk e (mb bk (et ek bbb e b ek (b ek ik fmb et e et

—

n

©n
n

mnon

rn

Var filename:argtype! i!integer:!
{Ncte thxs var i is not the same as that used
Begin
ok = {rue:
for i 1= 2 to 3 do
Begin

with paramlil do

y 0 M 3 0~

~, 170.

if (tag <> idtype) then Help else
begin
Lookup (id, attir,
if found then
Begin
Case attr.kind of
scratch,concode,seqgcode:

found):

Error (‘File kind must be ascii(:

Aecii:
End: { of Case }
(&2

10:

ie pacscsed

{ Toop to locate & open both filec }

)

m-«

in Context.



If i = 2 then Writeargiing.

Wriweargxou :

; End {gf I1 |Gunu...,NB na cemi-colion heve. 1
Elge
o If Ertﬁrf,IP fi unknown (101371
}I Error{(’0F fiie unknown{:10:117}:
) End: ..c,..elqe}
. End:
} End: dure Set_filee
FProcedure {Closes files & veisz performance.
) i83. Begin . : ‘
{} 184, Urite {(eot): write (em)! . »
185, Readarg {(inp,paramlZ21): { clese IP & return status.?
—  18&, if not parami2l.bocl then :
ﬂj 187, error(’Froblem reading IF filal:!
L) readarg (out, param{31): ?
i if not paramf3l.bocl then
(] 13 errar{ ‘0P file lost{:10:)7)!
)m 191, With paramfil do
Begin tag != hooliype! bool = ok end: -
ag 1

3. Var blockipag
i1, Beagin
FEepeatl

|

Until eof:

{ end of
209,
210, { The mai
)j 211, Begin
S Identify ('

Set_files:

copytext:

Terminate:
End.

{ End cof

{ use the extra param to set pnrfermgr f1l
End*“={%of Terminate 3~ " g

1=

End! ( of Copyt

n pr

&. Procedure Copytext!

7 { Copies standard pages of ascii text.l
:, { Declare local variables for uce 1}

. { within this routine only. }

ecf iboolean:

Readpage (biock, eof):
Writepage (block, eof):

oreliminary definitions % declaratione

ogram 1}
py:{:10:)7): (pass pgm name to

{
call this procedure }
i1 ancther 1}
and the last.}
note the mandatory point here 3

)77




J

e

7
—

—

SEQUENTIAL [l S S Ay ) 0.C.¥alden

.- Documentary support fGP “ﬁe" Fascal  is v&r? SpaTSE or horrendously
expensive. Brinch Hansen’s book fref.l1.], cost me almost $460, but it is not very
he1pfu1 -These notes are intended to help in getting started. They should: ke
read alongside the User Manual and a prini-ocut of the Prefix from the master
dLsc: The program Copy included uurhsi%} but  was written more o 'illusif&te

ppihtS”ﬁaised than to have any enduring usefulness

ascal Frograf. o
This must take the formi-
Prefiﬁ, followed by Definiti
Cun:tdntd, Data Types, Variak
=
a

io _
nec; {(Procedures &
men

ThEﬂe are followed by the sequence of Staten ts farman the mai
ich will be executed one at a time. e ’
e program  is  automatically stored  an di:f éfté? comp i
typing  its 'name and any paraneter: ~en the ¢
_the name of tha file c;ntdqnxnc‘.. 'qrdm uﬁtrn i

surely confusing, to use ancther
) Copy would be calied:-
anv (Thlc fivte,That flle\

y,namecr must - com p?y with Fascal identifie *ax.‘hut may. De =tan
" The drive number on disc files is not nfas pari of  the ©
Lpr._ Device files are named as per Mdex 'Cdﬁégdev. Fr:ndeev
auses some restrictions; see later. b
' g carr tlv';a1

?pardmeter in the 1;51, mor
d by number. The sysiem zlways i
’y_ be ‘used to vet program ;erfc
1)) so, This_file is ParamiZ2l, and so“nn,
t meationed are set to Niliype. See the record

‘3fby the aﬁtharsT bff‘the léncuagé'
ties to ease iransportability hetween: ,
consists of dummy routines which define the sy

fo La1?s UﬁDn them,‘andx

adlrect execution to the dgtnall routines within th‘j nperauing system. Some

rout)nes must be called before athers become etfect;ve.g

Flle manrpulatlan. i e
”__There are 1iwo duatsn‘t groups for this, they serve to tell the system ihe
names and intended use of the files. o ' '

1. READ/WRITE.
© A call on the Prefix procedure Writearg activates this groupi-
Writearg{inp,source) or Writeargiout, dest) opens
ithe files named in the variables Source and ﬂest
which must be defined as Argtype
Thie activates the procedurec ?ead, Urite, Readpage
and Writepage which may then be used to access
their files cequentiially from top ic eof.
The closure call is Readargl{inp, scurce) or Readarg{out, dest).
They return a boolean to inform on satisfactory
file usage.

2. Dpen{filenc,filename,found) asscciates an integer
with the file by which it is theresfter referented.
This can only take the values ! or 2, so only

two files can be open at a time.

This enables Geit, Put and Lengtn. Get & Put can

set the file pointer to any page so give random access.
Close terminates access and zllows re-allocation of the file number.

17-3



CGonsole I/6. :
If the conscle ic described to ithe system as Cons.dev. all the above file
; routines are applicakle. The random nature of FEL/Fut ic ignored. Howsver. ine
a

console may be addressed Ly calle io two special routines, D!sHid and A_Lep
chars :nd weed no prior activation. (SEE ‘Frocedure

These transfer single !
Cantext in Copy):

1/0 Ascii restriction.
Fa=ral can only acce

other types»wsli need rc Ve
o

pt asci ; v i

Fasedit on. the,ma:ter disc prov 1des murh_ef what is needed fnw ;Jhe. cons ie. If

its =mall. demn ‘program is del ed, it <an he copied to & gram in piace

—_ of Prefix blﬁCE thax is a%raﬁy pre:ent uger 5. global usnstnhts, vars.etc.,

shouid
functions

v
betuwee the Frefix fahd.jPaaedjt,_-Freﬁe;iﬂeﬁ conversion
The---

_ “fx) . The
CONYV Ly )1 The
Tﬁunr (xs The

‘The uanhup pwcredur
returns. a’ hnalean True
1u,:a§eu|nd)’

'Tﬁie'“
& Ly
;rum une“
“is the n;

f:the consaole
4ndi€aiﬂ “the
is printed
afffhe pgm name

bﬁre only - fur"eauh_ phase.
durlnq eyerutxan, ‘

; paﬁémsw
be +yged far a con:uln Ci].g . ;_, ;rahies must_
They = are used af er return '

was temlnated." :

3

hpeekiﬁpokexsfmiiér to Basic Feekidee;Q

RE I Xcall calis an Assembler program into acttnn from a vunnxng FasLal pam. {1 hav

[ . . .3
not used this yel hut it seen;s =xmp?e’ ,
; A1l routines starting I0.... s _ i A
e 4 oproblem here 2z most use Prefiy descripiions of peripherals such as
Typedevice, Printdevice, etc. I have never had ithese accepted by the compiler

[ which only recognises Mdex Cons.dev, Print.dev.etc. Such routines thus do not
; work. Euceptions are the types loresult and Ioparam. Both of these are
' effective. '

: ‘askkind. Three tasks are defined, Inputtask, Jobtask & Guiﬁu£t§=k. I have never
. been able to get owt of Jobtask. Brinch Hansen says that Readl:ne/WrutErsne are
not effective in Jobtask. They don’t work..

|
:J Program plvar, paramiarglist] )

This: is called when the pgm is activated from the conscie. Mo other
definition Program musi appear. '

‘ther Features., Pre-defined operators for:-

Sets Ok Union = Equal
& Intersectiaon #» Not equal -
- Difference ' <= GContained in :
; iN Membership >= Contains
1= Assignment




= < = » iz b » =

i

alway

i,
mn
[n)
[m]
jm}
o
m
Al

‘_I

These have ihe expecied meaning. Resulis are

oolean & ORF HNOT where resulis ars sither False or True.

Integer + - % DIV NOD

Real = < o= >="¥ a— LS the pPEjdéf}neu.funtt'ﬁn ABE{xn),
Arrays == <F

Strings ¢ > 4= =

Records. = = A

Stiordge requir

ements in bytes
Pnum:::: Reals:

g 89;5}1&: String of m
Control Chars. Th

gsg must be wt;ttnn
fthe'fn?m.fﬁf Line Fe

lheyiare strin

'Juome Standar
vSUu ix)

 ;Brinrh H implemented arei-
7jﬁR (%),

o %nn:e
'Infegnr-,*' ¥ A : S
O (%), ARCTAN(x), LN(x) the ndtura!'}bg.

TIhese must all be REm]S‘; '
Thern must ke othe rs, perhap

bu- thdt nust he Real or’

Variable & Universal Parémetér51  _ , :
- When a procedure is given. paraneter. it may nnrmal}y use the value =upplted
but 'is not allowed to rhange it. These ars Fonstant Params. If the procedure is
required to change the value, the param identifier must® be: preceeded by the
symbol VAR. e.g. Frocedure Something {addr:integer: var block:page) T
Of the two params the routine may change the value of “block’, but not ‘addr’
Simitariy. it cannot always be known in advance what type of data a variable
will ke called vpon to accept. This may be accomodated by wriling UNIV in front
of the identifier. : ‘
.G. Fﬂocenure unmethlng (un:v textiline).
This makes #t‘ a universal param which can accept any dats type oc cupylno
the same length as would type char.
Conclusion. ﬁULH.@QTE information can be got from reading print-outs of master
disc programs of _____ S ,
Note that in an IF-THEN-ELSE cstatement. no semi-colon must be used in front of
Else. ' ‘
Is there &anyone with original Mdex Pascal documentation prepared to make it
availabie for copying? 7 '
Finally, Brinch Hancen mentions several concsole commands. I can‘t find any
which wark. Can you? i

The Program Copy.

Call from console,
type 2/copy infile,outfile

Copy tiransfers data from in to cut. The files can be disc files wifﬁwﬁfiQE
number, or device files, Cons.dev, Print.dev, etc. If you can’t remember the
correct call, just type Copy . AA prompt message is printed.

7.5
17°S




: _muct_ bE’f‘y}
"slintege
ee, itz 3
‘calis. 3
Procedure Gon
Var iiiniege KU SRR i i
{local va ly exist whi rocedure is ¥ o
They are not ac ~from outside.}

1 33 ’j b
s

,1Eg§£fj:

140, Procedure Help;'
141. Begin ok DAL e e S ‘ N :
142, Context (‘Bad call. Correct form jéh{=Cdby {Infile,Outfile:identifier)’ {i10:)7):

— 143, End: s R A ‘ SRR -

! 144, . o
-7 145, Procedure Error {text,I-ne) :
144, (the =tr|ng passed to this prnceduve ic pascsed on again to Contextl

1 147. Begin
148, Context (texﬁ):
149. ok = falsel’
} 150. End! i
{ 151, . .
152. Procedure Set_fileg! ( loop to locate & Qpen both files 3
153. Var filename:argtype: i:integer:

] 154. {Note this var i is not ihe same as that used in Context.3
L2 155. Begin i
136. ok = {rue:
| f57. for i =2 to 3 do
} 158. Eegin
- 159, with param[il do
{ 160. if (tag <¥ idtype) then Help elce
! 161, be
| gin -
162, Lookup (ld, attr, found}:
163. if found then
| 164, Begin
() 165.° Gase attr.kind of
166. scratch,concode.seqcode;
1467. - Error (‘File kind must be. ascrn( 1007
. 168. _ fisciit i S
169y End: { of Case } h
Loy 1700 (&2 :
SR I S




[ ,__
L |

fmte Bl et fooh ek b ek b ek el g e fek el feh ek ke e ek

193,
198, End

T $Eof%
¥

S
e

] 3
-

e B L
[0 I O IR

[W0) I <

o EI:ICLJ [t I o o O ¢ T T w T R S [ |
CO ] O L D) R e € 0 0D - o
- o N 3

. _readarg (out, param

193

17’:.
178,
199. O with)n this rou*rne 0
200. Var biuckipaqe ~eof ! booleaﬂ
01. Begin b e
202, Repeat
203. Readpage {block, eaf):

04, Writepage {(bklock, eof) TR ‘ R o :
205, Until eof: : S L S , LR B¢
206. End!  ( of Copytext 3  }31 . Sl AT
207. ' _ L o S E
208. { end Df all p&gliminary definitions & declarations 1} ' S ]
209. ' ' ‘
210, { The main program }

211, Begin

212, Identify (/ Copy:(:
213,  Set_files: { call this procedure }

714, . copytext! { call another 3

213.  Terminate: ( and the last.}

Z14. End. { note the mandatnry goint here 3

217. : ; ‘
218, { End of Copy 3} ' l —

10:3/): (pass pgm name to system.}

w7




